Posts Tagged Rainmaker

The Construction Stages of Cheops

 This is an alternative view of the construction of Cheops from The Great Pyramid Rainmaker. It is based on knowledge of how Cheops worked and its purpose as opposed to the third person account related by Herodotus. No researcher has been able to make sense of the currently accepted time frame for good reason, it is wrong.

‘Cheops was built in twenty years’ is repeated so often that it is rarely questioned. It had to have been constructed in a single lifetime in order to fit the tomb view. Scholars try to explain the pyramid with this in mind and invariably fail. This summary highlights the various working stages of the build and the value to the builders. It implies that the structure was probably constructed over many generations.

Several engineers and archaeologists have found evidence of water in and around the Great Pyramid. Here the implications for the building program and the functions are covered briefly. There are five phases outlined, though the pyramid could have received more than one refurbishment between any of the key stages. Each is deduced from the mechanic of the pyramid itself and data that is often overlooked in order to maintain the tomb view.

The five functional phases of Cheops

  1. A reservoir that allowed the site to be settled
  2. A mastaba/valve that increased the amount of water stored
  3. A geyser chamber that sent water to the summit of a flat top pyramid
  4. A higher chamber and pyramid that processed water & produced rain
  5. A cenotaph built over a failed machine

Each stage is summarized below. The evidence lies housed within the structure. It is a matter of showing how each phase worked under simple principles. The working machines were all neatly buried beneath tons of geometric rocks in the final phase. Despite the discovery of moving parts, water and a common scheme, Cheops is a tomb to the scholars. No matter what is found, there will always be an academic willing to find some new esoteric reason for it. There will no doubt also be a mystic and alternative writer to do the same.

Here the focus is on how to get the various parts working and what they meant for the builders. Importantly the science of each stage is known and was known to the ancient Egyptians. The various phases were break points where the utility could be exploited for decades before embarking on the next. There is a brief account of each step below. Hopefully it is enough to convince the open minded that Cheops was built over centuries and performed vital functions for long intervals. For a more detailed description read The Great Pyramid Rainmaker.

The Reservoir

The plateau was inhabited long before the pyramids were even conceived. It made a fine refuge from the flooding of the Nile, because of its height and the free flowing ground water. A cold water geyser system functioned where Cheops was eventually to be built. Its sediment raised the natural mound that is still at the core of Cheops.

At this early stage there were no plans for a pyramid, just a need to capture the ground water and store it. The reservoir would allow large numbers of people to permanently settle the site instead of retreating as the water table dropped. To store the water the first settler-constructors built a retaining wall around the natural geyser. This is common to many ancient sites; great reservoirs are always an important facet of settlement.

The permanent settlers could thrive and build drainage channels and canals from the reservoir to convenient transport and irrigation networks. They also received a boost to their income each year as the flood migrants arrived. Ultimately Giza became a central hub of the ancient water network with locks and canals flowing to and from the plateau. This is a common function integrated into many pyramid complexes.

As each canal was dug, there was the natural byproduct of stone. This was used to create the first buildings on the plateau. Again this is a common feature in any pyramid building culture. It did not matter if the canal was dug into dirt or stone, the material was used to form the mass of the pyramids. On the plateau the extracted stone was immediately useful. The canals also provided routes for special stone to be brought in.

The wall is still on the plateau, though no doubt it has had many improvements since the first one was built. It likely started off as relatively small structure and grew to its final stature with time. The current one still has evidence of the overflow conduits. The main problem was that as the water table dropped, the water would back fill the caves beneath the plateau partly emptying the reservoir. A simple solution was needed, which leads to stage two.

The Mastaba Valve

In order to raise the level of water that could be stored a one way valve had to be constructed. It took the form of a simple platform or mastaba. Water flowed to the summit of the mastaba and then into the reservoir around it.


The mound was built up to a raised platform and the structure took the form of a mastaba or stepped pyramid. This is controversial. The affinity for the perfect four sided triangular pyramid is strong in the academic community. It is what makes Cheops such an enigma. However, most pyramids were built over time by adding increasingly larger steps. This is not viable under the tomb time frame, which might explain why it has been rejected. As will be shown, the evidence both physical and textual points to a staged build.


The raised platform/pyramid acted as a simple valve. When water flowed to the summit, it could be stored and any excess poured down into the original reservoir. When the water table dropped with the seasons, the reservoir did not flow back into the ground beneath because of the raised inlet. This allowed much more water to be stored and used.

Please feel free to share this page and then move onto the NEXT stage

, , , , , , , , , , , ,


The Rainmaker and Cenotaph

The final working phase of Cheops involved making the structure larger, adding the King’s chamber and raising the water even further. The means was much the same as the QC phase, though several improvements were added. All of these support the scheme in practical ways. These give reason to the portcullis, the Grand Gallery and the various parts of the KC.

In this phase the QC was blocked off from the water flow. The King’s Chamber became the new geyser cavity with exit pipes running to the 101st course.

The mechanism employed was almost identical to the QC phase. Ground water pressure took the water to the King’s Chamber via the Grand Gallery and portcullis. The height was ascertained during the running of the QC. Degassing occurred in the King’s chamber (See the QC diagram above) and in the Grand Gallery which exerted its force via the Davison passage. A combination of the two pushed the water down the KC and out through the shafts that ran to the top of the pyramid.

The water was brought out on the 101st course, where there were the same structures found on other flat top pyramids. There was a water reservoir, a weir and an overflow system. This sent the water down the side of the structure adding an extra 120 feet to its path. This extra distance increased the warming and turbulence, which helped process the water and added to the vapor that it created. This is a very short summary of the mechanic, for more detail see The Rainmaker.

The elements of the geyser are still there. The King’s chamber and low set exit pipes form the basics. There were several fine advances made in the design that added value and confirm the nature of the machine. One of the more intriguing is the automated Portcullis system. As the water rose and fell with the geyser cycle, this system could open and close automatically due to buoyancy. The exit pipes (air shafts) are at exactly the right height to allow the system to operate. A summary of the operation can be found here. The Portcullis System


 The gains for this phase were much the same as the QC stage (see above) except for the byproduct of Rain. To make rain even on a local level requires huge amounts of energy. Fortunately the energy involved in this endeavor was of the order of 500MW a day. That is enough to seed a lot of clouds. This would also make Cheops the largest machine ever built before the 20th century.

The system is not just theoretical; small versions can be built and tested by anyone. There are models described in the Rainmaker that allow anyone to demonstrate rain making in this manner. The method and means to recreate the system will be placed here if there is enough interest. This includes the control mechanisms, detailed benefits and designs for working models. This will help clear up a lot of evidence from Giza that is currently confusing.  At the moment it is detailed within the book, the focus here is primarily the stages of construction.

The Cenotaph

This brings us to the final construction phase of Cheops, which involves its failure. Any geyser is sensitive to the level of the water supply. Most geysers stop working because the water no longer fills the cavity. Cheops was no different. The water level rose and fell with the aquifer beneath. This happened and still happens throughout the year. Today it does not even get to the ground level making Giza a dry and dusty place.

A smallish drop in the water pressure would stop the portcullis stones from rising and falling. When the water tabled dropped, the King’s Chamber ceased to pump. This was the greatest machine failure in human history. The salt deposits found in the core of Cheops attest to the water standing idle for long periods. There was probably the hope that they would rise again, but it did not to happen.

As the water level fell, the site became a dry necropolis. Bodies were buried around the largest machine ever built. While the bodies were piling up, the Pharaoh’s had this massive white elephant mocking them from on high. At some point, likely during Khufu’s reign, it was decided to cover up this embarrassment to royal power. This is the saddest part of the Giza story.

Many of the stones from the faces had been reused for other buildings, just as they always are. A grand project was started to place stones on the structure and complete the peak. At the same time there was a conscious effort to remove any record of the building’s true function. It seems this was successful. A further outer skin of stones was added. The peak was finished to the apex. The white casing stones were added along with a lick of paint.

The only record of construction comes from this final stage. It was a smaller though no less difficult task. Less than an eighth of the mass had to be raised, but this was still an impressive project. Without a ready supply of water at height, the project had to be carried out the hard way. The accounts that passed through the ages about the construction of Cheops relate to this cover-up.

After a few generations the memory faded. Without the records, Cheops’ use fell behind the mists of time. The cover up was so complete that even the record that is left leaves few in any doubt as to the mere symbolism that the pyramid inspires. A modern industry has grown up around the tomb view.

A once grand and useful building has been turned into a tomb marker for the graves of those buried around it. It is a cenotaph to a dead vision. It was a monumental mound to regal embarrassment. The true function may discomfit the scholars who proffer the idea that the structure was a tomb, but no tomb was ever intended at the start. Cheops was originally a great machine powered by free flowing water and the sun, the fruits of Osiris and Ra respectively.

It is the sad fate for the king of all machines. It is consigned the status of a tomb stone. Maybe when the current civilizations fail and the future archaeologists look back they will think it was a fun park. The modern penchant for themed rides combined with the evidence of ticket booths and bus parks may force no other conclusion.

Please feel free to share this page and read
The Great Pyramid Rainmaker

, , , , , , , , ,


The Man Made Geyser

This phase of Cheops has evidence from the structure itself. The parts and mechanism make this abundantly clear. The use of the cold geyser technique to lift water to ever greater heights began here. The Queen’s Chamber is in effect the evidence with its pipes that no longer reach the outer layer. This part of the project also provides a clue as to the origins of the idea for the most ambitious next working stage.

The Queen’s Chamber was built on the summit of the original platform and a stepped pyramid was built up to the 58th course. With outlet pipes in two directions, the chamber formed a man made geyser cavity. The immense amount of stone was needed to withstand the water pressure and support the summit chambers.

The mechanic of this phase was simple. Carbonated ground water was forced in to the QC by the natural water pressure. When it filled the QC, dissolved gas in the water was released by turbulence and the slight increase in temperature between the cool ground and the chamber. This gas forced the water down the QC and out of the ‘air shafts’. When the gas level reached the exit pipes, it vented in the classic geyser style. This is identical in principle to a soda siphon.

At this point most of the water had been pushed to the summit and the chamber was nearly empty. The pressure had also been decreased due to venting. The ground water pressure was now higher than the chamber’s, this sent water into the chamber and the cycle repeated. This is identical to Kunkel’s method for a single chamber. However, instead of steam being produced by heat, gas trapped in the water was released to provide the force. See Diagram (Blue is indicated by the water, Yellow is the gas).

The remnants in the structure all add to improving this dynamic. The chamber design, the ‘air shafts’ to a previous summit, the solid sealed granite roof slabs and the mass of the structure all have distinct functions. They all contribute to the system.

The water pumping concept is common to other functional models of Cheops. Kunkel uses much the same pattern of support. However, his and all the other models introduce extra parts for the system. Excepting Cadman’s RAM pump, none of them work. Here, nothing needs to be added, except the natural fizzy water and the system will operate. Of course great chunks of the pyramid are removed for this phase, which is just as controversial.

This step pyramid was used in the same way as the other step pyramids. Some are known to have had water reservoirs on their summits and/or reservoirs surrounding them. Akapana and Angkor Wat are both recognized as having water reservoirs on the top level. This short Cheops was no different. It supported sanctuaries built in much the same style as the other step pyramids of Egypt.

Only one sanctuary is shown above, but there were likely the usual arrangement of five sanctuaries on the summit. The function and operation of the sanctuaries is described HERE, they were of great use to the builders. This type of pyramid structure in Egypt is mentioned by writers such as Herodotus, though not in the context of Cheops.

Gravimetric analysis of the structure shows steps up each side. The texts mention ‘battlements’, which implies ledges around the building. There are also references in the Pyramid Texts to a summit where the pharaoh’s body was cremated. None of these features are consistent with a smooth sided peaked pyramid. They are however in line with the more common tiered pyramids found in Egypt and the rest of the world.


The gains at this stage include an increase in the volume of water that could be processed and energy independence with the solar aspects. The water was further degassed and warmed as it flowed down the side of the sun heated pyramid. Water and energy are always important factors in any settlement. This water was put to good use on the plateau for a number of industries that emerged. The transport network also grew to maturity at this stage.

 This phase also led to the origins of the penultimate Grand Design. There were two factors that evolved from the QC phase. The first and foremost was useful information. Most argue that Cheops was built all in one go, from the ground to the peak. This can not be the case if the structure was a machine because there was no way to know how high the natural water pressure would reach without a phased build. As the structure was built, the maximum water level became clear.

Secondly, a side effect of this stage was the impact of all the falling water. Likewise this could not have been known before the build and operation. No one could even guess at the effect since nothing so large had ever been built before. Water vapor had been seen in the solar chambers, but it was slight and short lived. The vapor was more of an irritant than a goal.

The massive flow of warm water down the side of Cheops led to an amazing insight that was applied with intent in the final working phase. The effect they noted was the mist that formed from the weir on the summit. At any hot geyser or large waterfall this same mist can be seen. It leads to unique weather patterns. The vapor from a geyser/waterfall laces the air with moisture. This causes fog and cloud which in turn makes localized rain. The mist and cloud likely inspired the builders on to the final working stage, where these properties were taken to a higher level.

Please feel free to share this page and move onto the NEXT

, , , , , , , , ,

1 Comment